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ABSTRACT 
We describe the development of the CaveUT system, which is a 
software supporting immersive virtual reality installations based 
on the Unreal Tournament game engine. CaveUT implements 
several high-end VR features such as real-time stereoscopy with 
head and hand tracking. We demonstrate the use of CaveUT in 
the SAS Cube™, a PC-based CAVE™-like immersive four-
screen display. One of the main advantages of the system is to 
support full immersive VR while retaining the advanced features 
of game engines in terms of interaction and inclusion of 
behavioural (or AI) systems. We illustrate the use of CaveUT on 
two installations: an artistic VR installation and an immersive 
interactive storytelling system.  

Categories and Subject Descriptors 
H5.1 [Multimedia Information Systems] Artificial, Augmented 
and Virtual Reality - Virtual Reality for Art and Entertainment. 

General Terms 
Design and Experimentation. 

Keywords  
Game engine, Immersive Displays, Digital Arts, and Intelligent 
Virtual Environments. 

 
 

 

1. INTRODUCTION 
Sensory immersion combined with real-time interaction (Virtual 
Reality, or "VR") has always had great promise for innovative 
game design, but application development software and libraries 
for VR research are intended for very diverse applications.  They 
generally do not provide the animation support, optimized 
graphics and real-time Physics that most game engines 
incorporate.  CaveUT1 solves this problem by adding a VR 
interface to the Unreal Engine2, which preserves the engine's 
built-in advantages, allows for the re-use of existing game 
content, and allows for the creation of new content using standard 
methods.  CaveUT, which follows the principles described in the 
original CAVE™ system [6], supports a variety of immersive 
display strategies, from low-tech to fully stereoscopic multi-
screen display, which we describe in this paper.  CaveUT is part 
of a general trend among researcher to take advantage of new 
technologies developed by the game industry [11], including 
support for immersive displays.  Large, single-screen displays 
offer simplicity and compatibility with a variety of game engines, 
and the most advanced provide stereographic imaging with 
tracking3 (see Figure 1).  Several approaches to the immersive 
visualization of game engines output have been described. 
Graphics “tiling” software allows games engines to display on 
very large composite screen displays4.  With specialized graphics 
drivers, and the correct settings, a game engine can display in the 
new all-digital dome displays5. A game engine can display in a 
CAVE™-like [6] enclosure through direct modification of the 
engine itself6 with full tracking and stereographic imaging.  
Finally, a game engine can display in CAVE™-like enclosures 
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through the combination of modified graphics drivers7 and top-
level code to synchronize the views.  The latter approach has been 
adopted for the development of CaveUT. It avoids many licensing 
and distribution issues, and allows straightforward upgrades when 
new versions of the game engine are released. 

CaveUT 2004(TM) is a set of open-source freeware modifications, 
which allows the player to interact with Unreal Tournament, 
where s/he sees a unified view across multiple screens which can 
be in any orientation to the user.  It has been available to the 
public since 2001 ([7], [8], [9]) and is detailed at its online 
distribution site1.  The latest version is CaveUT 2004 which takes 
advantage of the latest release of Unreal Tournament and provides 
better synchronization between screens.   

Recently, in collaboration with members of the ALTERNE 
project [3], CaveUT has been extended to support stereoscopic 
display and real-time tracking of head and hand position. These 
capabilities have been incorporated into CaveUT 2003 and we 
will soon add them to CaveUT 2004. CaveUT 2003 v2.0 is 
available by request (jeff@planetjeff.net ) and will be available as 
part of the AlterneTM software platform for VR Art8  [3]. In 
further sections, we will illustrate the use of CaveUT through 
some of the artistic VR installations developed as part of the 
ALTERNE project (figure 2).  

 
Figure 1: A Immersive Display: The SAS-CUBETM 

2. A CaveUT Primer 
The development of CaveUT was made possible by the fact that 
Unreal Tournament (UT) is partially open-source.  UT uses the 
proprietary Unreal Engine, which handles graphics rendering, 
animation, physics, networking and a byte-code interpreter which 
supports Unreal Script, a Java-like programming language.  Much 
of the game, itself, is written in Unreal Script, and all of it is open 
source.  A large community of players, game designers and 
researchers constantly produce new, open-source code and 
content, and CaveUT initially followed this trend.  CaveUT is a 
package of original code written in Unreal Script with extensive 
documentation for its proper use. The original (core) CaveUT 
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supported only monoscopic imaging, no rendering 
synchronization and no tracking capability.  However, it can still 
be useful to develop low-cost immersive displays, straightforward 
to set up, and is currently employed in several research 
installations. 

A multi-screen display based on CaveUT requires a server 
computer connected by a standard LAN to a number of client 
computers, at least one for each screen in the display.  The 
operator begins a multiplayer game of Unreal Tournament with 
one normal player on the server and one “spectator” player on 
each of the clients.  Each spectator initially duplicates the view 
seen by the player on the server.  On each client, the CaveUT 
code rotates the view according to parameters defined in a 
configuration file, so that each screen is showing the part of the 
composite view it is supposed to.  For example, the view in the 
SAS-Cube™ shown in figure 2 is produced in part by having one 
client “look” forward, one look ninety-degrees left, another look 
ninety-degrees right and the last one look down. CaveUT 
preserves these rotations relative to the server player's view, so 
the operator can navigate using standard game controls attached 
to the server. 

 
Figure 2: Immersive Visualisation In the SAS-CUBETM 

However, the perspective correction on each screen must be 
adjusted so that the ideal viewing point for each screen is located 
at the same point in physical space.  For a static (not using any 
tracker) CaveUT installation, this creates single, ideal, viewing 
location for the whole display. As long as the player keeps her 
head at or very near this point, she will see a unified and 
undistorted view.  Interestingly, the screens can rest in any 
orientation to the viewer and they do not even have to contiguous.  
For example, CaveUT could be used for a driving simulator, 
where CaveUT provides the view for the front and back 
windshields, each side window and the rear-view mirror.  The 
perspective correction is introduced by a modified OpenGL 
wrapper library, called VRGL (by Willem de Jonge), which rests 
“between” OpenGL and the Unreal engine.  VRGL and CaveUT 
share the same configuration file, which provides the parameters 
needed for the perspective correction.  Unlike the CaveUT code, 
VRGL is an independent package and could be used for other 
applications (for a more detailed explanation, see the CaveUT 
distribution site1). 



3. Rendering Synchronization  
In CaveUT 1.0, rendering on the component display screens was 
not synchronized.  This is not a problem for monoscopic viewing 
if all of the clients are able to render at thirty frames per second or 
faster, but that is not always going to be possible, even with 
identical machines.  Load will fall unevenly on each of the client 
computers, depending on which part of the scene it is rendering.  
CaveUT 2.0 solves this problem with the addition of a simple 
swaplock server, which runs on the server computer in parallel 
with the UT game server.  The server starts by broadcasting a 
“ready” message to the client computers.  The signal instructs the 
VRGL on each computer to wait for a “render” message before 
displaying the current rendered frame. Each computer then sends 
the swaplock server a “ready” signal.  The server will wait until it 
has received a signal from all of the clients, before sending them 
the “render” signal.  This insures that all screens will render at the 
same time and at the speed of the slowest client. Although this 
could in theory decrease the rendering rate below acceptability 
thresholds, in practice this has never been observed in the various 
implementations with which we have experimented. 

4. Tracking 
CaveUT now supports real-time tracking in physical space, using 
the Intersense™ IS900 system9 or any similar devices.  Attaching 
sensors to the user's head or a hand-held controller creates many 
opportunities for user interactions with the virtual environment. 
Tracking the player's head allows CaveUT to generate a stable 
view of the virtual world, while the player is free to move around 
inside the display (which has the size of a traditional CAVE™).  
This provides automatic adjustment for the user's height, allows 
her to use parallax effects for better depth perception of the scene, 
and permits a wider range of interactions with the application.  
Hand-tracking allows the UT-based application to be aware of the 
location of user's hand or some hand-held controller at all times.  
This allows much more natural control designs, such as being able 
to physically interact with a virtual object by simply pointing the 
controller at it and pressing one of the control buttons. This 
potentially supports a wide range of tracker-based interactions 
(for a detailed taxonomy of interaction with VR applications and 
tracked controls, see [1]). 

From a system integration perspective, CaveUT uses another 
freeware package, Virtual Reality Peripheral Network (released 
by the Department of Computer at the University of North 
Carolina at Chapel Hill) to handle input from all control 
peripherals such as joysticks, buttons, gamepads and the tracking 
system itself.  All controllers are physically attached to the server 
machine, and data from the peripherals are collected by the VRPN 
server, which runs in parallel to the UT game server.  The VRPN 
server converts data from the control peripherals into a generic 
normalized form and sends it to the CaveUT code in the UT game 
server, via a UDP port.  The modified UT game server uses this 
information to update the user's location in the virtual world from 
the head tracker and to process commands from the other control 
peripherals. 

With respect to the head tracker, this means that when the user 
takes a step in physical space, the server moves his corresponding 
viewpoint (and avatar) in virtual space.  The VRPN server also 
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broadcasts the user's new location to each one of the UT clients, 
and the information is received by a VRPN client. Then, the 
VRPN client sends the tracking information via another UDP port 
to the VRGL code attached to the UT Client.  VRGL uses this 
information to adjust the perspective correction, in real-time, to 
preserve the perspective depth illusion.  The overall result is that 
the user's view into the virtual world looks stable to him and the 
correspondence between the virtual world and the real one is 
maintained. 

Data from the hand-held controller can be use to select and 
manipulate objects in virtual space.  For example, the player 
could select and “grab” an object by pointing the controller at it 
pressing a button on the controller.  This supports various forms 
of object interaction, such as the triggering of object behavior or 
the real-time manipulation of the object position and orientation. 
Tracking is also a prerequisite for binocular display using active 
stereo imaging in immersive virtual reality systems. 

5. Stereographic Display  
CaveUT 2.0 supports stereographic display by using two 
computers per screen, one to render the left eye view and one to 
render the right eye view, with an average frame rate of 60 
frames/sec per eye in most experiments reported here The camera 
view can be offset from the viewer's default configuration by a set 
value equal to half the inter-pupillary distance.  If no tracking is 
used, then the separation is horizontal (left and right) and the 
illusion will hold as long as the player keeps his or her head level, 
which makes floor or ceiling screens impractical [10]; however, 
with tracking, the view for each eye remains centered on the 
designated eye, regardless of head position and orientation.  This 
is the solution implemented for use in the SAS Cube™, which 
includes a floor screen. For active stereo, (as well as for color-
based stereo) this allows the user to look in any direction and at 
any angle.  CaveUT supports various approaches to stereoscopic 
display, including passive and active stereoscopy. For passive 
stereo with two projectors per screen, a linear polarizing filter 
should be placed in front of each projector lens and in front of 
each of the viewer's eyes.  The orientations of the filters on the 
projector lenses should differ by ninety-degrees.  As long as the 
player keeps his or her head level, the illusion is excellent and the 
colors are vivid.  This approach requires that the projectors do not 
produce light which is already polarized as some LCD projectors 
do.  This should not be a problem with DLP projectors. For color-
based stereo, the left and right projectors should be set to produce 
only red and green respectively, and red-green filter glasses are to 
be worn by the player.  This approach is almost never used, 
because the resulting image is in an unattractive monochrome, but 
it is easy to implement and robust.   

Active stereo requires a single stereographic projector which will 
alternate between the left and right eye views at 120 frames per 
second.  The player wears “shutter glasses”, on where each lens 
alternate between black and clear, also at 120 frames per second. 
The glasses switch in time with the display, and the result is that 
each eye gets the view it is supposed to at 60fps—the left view for 
the left eye and the right view for the right eye.  All of the screens 
in the composite display must also switch view at exactly the 
same time, a desirable state called “genlock”.  

The original CaveUT system does not have software support for 
generating an active stereographic image from a single machine.  



 

 
Figure 3:  CaveUT 2.0 Architecture

The CaveUT 2.0 installation in the ALTERNE SAS-Cube™ 
platform uses two computers for each screen, one for each eye 
view, and uses the DVG (video) cards in their ORAD10  (PC) 
cluster to mix the two and send it to a single stereographic 
projector. The DVG cards also handle the genlock 
synchronization across all screens of the composite display (see 
figure 3).   

6. Interaction Design With CaveUT  
The interaction design for Unreal Tournament and most other 
computer games assumes a standard keyboard, mouse and 
monitor interface.  However, optimal interaction designs for 
immersive displays are quite different. While CaveUT can be 
used with almost any preexisting game written for Unreal 
Tournament, important features of the game's interaction design 
may no longer make sense in an immersive display, especially if 
the player is standing up, using a completely hand-held control 
such as a gamepad.  Unlike a desktop display, an immersive 
display must present a view of virtual world which matches the 
real world in scale.  This means that the player must perceive a 
meter in the virtual world to be the same as a meter in the real 
world, as though could simply walk through the display into the 
virtual environment.   

CaveUT handles these issues automatically, but the resulting 
illusion may make the virtual world look and feel larger or 
smaller than the designer wants it to be.  The game designer can 
solve most of the problem by applying a scale factor to the virtual 
environment display and to the collision handling.  Finally, 
another important self-location cue in a visualization engine 
derived from a first-person-shooter game, is the location of the 
user's “hand”, which can be derived from the display of the 
players’ weapon in the original game.  This is important whenever 
the user has to interact precisely with stereo objects at short 
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distance. The best solution in our experience consists in 
associating such position to the tracker-equipped gamepad held 
by the user. 

With CaveUT, the player can use any game peripheral (joystick, 
gamepad, etc.) or more advanced versions of these devices, 
equipped with trackers, which is the solution we adopted. There 
are many complex issues related to controls in immersive 
environments [1]. Two issues stand out.  First, most FPS game 
players move very quickly in the virtual environment, which is 
disorienting in an immersive display and does not correspond to 
any reasonable walking speed (notwithstanding the fact that it can 
generate cybersickness).  The “gain” on the controls must be 
carefully adjusted to match the experience intended for the 
current design (immersive gaming, VR art, etc.).  Second, most 
FPS games require the user to center his view on an object to 
shoot or select it, which requires rotating the view quickly and 
often.  In an immersive display this can be disorienting and fails 
to take full advantage of the wide field of view afforded by the 
display.  Ideally, the user should be able to select something by 
simply pointing at it.  Generally, immersive game design must 
take advantage of the wide field of view afforded by the display 
to be worthwhile.  If everything interesting is always at the center 
of the display, then the player gets no benefit from the display. 

7. CaveUT in action: Artistic Installations 
The stereoscopic version of CaveUT described in this paper has 
been developed in the course of the ALTERNE project, which is a 
VR Art project [3] aiming at developing a re-usable platform for 
the creation of VR Art installation. The main objective of 
ALTERNE is to define a technological platform for the design of 
“alternative reality” environments, i.e. virtual worlds whose 
fundamental behavior can be entirely re-defined in terms, for 
instance, of laws of Physics. This objective brings specific 
demands on the visualization engine that should support the 
system. Game engines, and in particular the Unreal Tournament 
2003™ engine, appear as a natural choice, as they include 



sophisticated event-based systems, which serve as an integration 
layer for the re-definition of environment behavior. The 
ALTERNE software platform is thus organized around three main 
components: i) the UT 2003™ engine for visualization and basic 
object interaction mechanisms, ii) CaveUT to support immersive 
stereoscopic visualization and tracking and iii) the “alternative 
reality” engine, which contains qualitative simulation systems 
overriding the native Physics engine for specific object categories. 
ALTERNE installations have provided the first test beds for the 
stereoscopic version of CaveUT described in this paper. Several 
artistic briefs have been implemented, which define immersive 
virtual worlds in which the user experiences novel forms of 
interaction with the environment.  

The first example illustrating the use of CaveUT is an artistic 
installation developed as part of the ALTERNE project, 
“Ego.Geo.Graphies”, by Alok Nandi [3]. In this installation, the 
user navigates in an organic world populated by spheres which 
originate in determinate areas of the environment. The spheres’ 
behaviour depends on the perceived “empathy” of the user, which 
is a function of her navigation patterns, unknown to her. This 
behavior manifests itself essentially through the effects that 
follow collision between spheres, which range from soft sphere 
merging to explosions propagating to the environment. These 
effects are under the control of the alternative reality engine, 
which intercepts collision events and computes alternative forms 
of causality.  

This brief makes use of most of the features supported by 
CaveUT, from tracking and object interaction to stereoscopic 
visualization. User navigation brings her in close vicinity to 
geometrical structures which acquire their full dimension as real 
stereo 3D objects, prompting the user to adopt appropriate 
navigation patterns around or under such objects. The spheres 
themselves can traverse the SAS Cube™ volume as floating 3D 
objects, conferring a high level of realism to the user interaction.  
In addition, the ultrasonic tracking implemented in CaveUT 
supports direct physical interaction with the spheres through the 
SAS Cube™ gamepad, which can be attracted or pushed back by 
the user (Figure 4).  

 

 
Figure 4: "Ego.geo.Graphies" in The SAS-CUBETM 

More recently, we have investigated how work developed with 
UT 2003 could be ported to an immersive context using CaveUT. 
Interactive storytelling is one of the applications that epitomize 
what future entertainment systems could look like. In particular, 
the “Holodeck™” system popularized by the Star Trek series has 
became a model for research in future immersive interactive 
storytelling system [12] [13]. Such a system is characterized by 
the full immersion of the user in a 3D stage, populated by virtual 
actors, in which the plot unfolds around the user herself. It has 
thus seemed a natural extension of our research in Interactive 
Storytelling [2] to adapt it to a fully immersive platform to 
explore the “Holodeck™” concept. Our storytelling system is 
developed on top of the Unreal Tournament engine, which made 
CaveUT a natural choice to port it to a fully immersive context. In 
the next sections, we briefly summarize the main features of the 
storytelling system, and discuss how the immersive 
implementation affects basic interactive storytelling concepts. We 
then comment upon the technical issues which had to be solved in 
the context of our CaveUT implementation.  

We have named our approach “character-based interactive 
storytelling” [2] to reflect the specific stance taken with respect to 
relations between characters and plot. The baseline plot for the 
interactive narrative (in the example supporting our experiment, 
the plot consists in a Sitcom-like episode about a group of friends 
organizing a party) is projected onto individual roles for the 
virtual actors, formalized as HTN plans. Each virtual actor will 
thus act independently according to its baseline role in the virtual 
world. The dynamic interaction between actors is the key 
principle behind the generation of multiple narratives from a basic 
storyline. The technical basis for dynamic story generation is that 
each actor’s role is formalized as a plan to be executed in the 
virtual stage; several actors will be competing for resources 
shared in the same environment, these resources being objects or 
other actors. These conflicts for resources result in plan failure 
and re-planning, hence creating humorous situations and driving 
the narrative forward. The same mechanisms support various 
forms of user intervention in the narrative, which will affect the 
characters’ actions by failing or modifying some of their goals. 
Detailed technical descriptions can be found in [5].  

An immersive implementation affects the paradigm for user 
involvement in the interactive narrative. We have originally 
developed our system for an “interactive TV” philosophy in 
which the user would influence the story from a god-mode 
perspective rather than as an actor. We then explored a mixed-
reality approach in which the user was simultaneously actor and 
spectator [4]. In the “Holodeck™” paradigm implemented here 
through CaveUT (figure 5), the user interacts from a first-person 
perspective, as a member of the cast. The stereoscopic display 
confers an increased feeling of realism, as 3D actors traverse the 
SAS Cube™ space, avoiding the user whose tracked position 
generates a bounding box. Full immersion and hand/wand 
tracking supports improved physical intervention on the virtual 
stage, i.e. the user can influence the story unfolding by 
removing/hiding key narrative objects (in addition to other forms 
of interaction, such as influencing actors through speech 
recognition). 

 



 
Figure 5:The  “Holodeck™” in The SAS-CUBETM 

 

8. Conclusions 
Through the implementation of CaveUT, we have shown that the 
advanced features provided by game engines for both 
visualization and interaction could be adapted to the context and 
specific requirements of immersive virtual environments. This has 
significant implications for entertainment technologies, as it 
opens the way for the exploration of gameplay in VR and perhaps 
the search for game genres better suited for the VR setting. One of 
these new genres in undoubtedly interactive storytelling, whose 
immersive form endeavors to implement the Holodeck concept. 
Existing forms of digital entertainment such as VR Art, whose 
installations used to be developed through custom-made, high-
cost, VR systems, can greatly benefit from this approach, which 
combines sophisticated features within greater accessibility of the 
software platform to developers. Finally, immersive VR based on 
game engines also constitutes yet another example of the 
increasing use of game technologies in non-gaming applications. 
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